Calculus C: Extra Credit 
You may choose up to __________ problems to complete for extra credit.  Each problem is worth a maximum of __________ points.

1. Definition of a Limit: Let 
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a. Clearly explain the definition of a limit (as stated above).

b. Explain the difference between a limit, a left-hand limit, and a right-hand limit.  

c. Sketch the graph of 
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and use it to show the definition of a limit (as stated above) graphically.

d. Use this definition of a limit to prove 
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2. Definition of a Derivative: The derivative of a function 
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 at a number 
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a. Clearly explain the definition of a derivative (as stated above).  Be sure include the meaning of  
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, and “limit” in your explanation.
b. Explain how this definition of a derivative relates to secant and tangent lines.

c. Sketch the graph of a function and show how it relates to the definition of a derivative (as stated above).

d. Use this definition to prove that if 
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3. Related Rates.  For each of the following related rates problems, draw a clearly labeled diagram, express all given quantities symbolically, express the equation that relates the given rate(s) to the unknown rate(s), and show all work leading to your final answer.
a. At noon, ship A is 100 km west of ship B.  Ship A is sailing south at 35 km/h and ship B is sailing north at 25 km/h.  How fast is the distance between the ships changing at 4:00pm?

b. Gravel is being dumped from a conveyor belt at a rate of 30 fte/min, and its coarseness is such that it forms a pile in the shape of a cone whose base diameter and height are always equal.  How fast is the height of the pile increasing when the pile is 10 ft. high?

c. A runner sprints around a circular track of radius 100m at a constant speed of 7 m/s.  The runner’s friend is standing at a distance 200m from the center of the track.  How fast is the distance between the friends changing when the distance between them is 200 m?

d. Suppose oil spills from a ruptured tanker and spreads in a circular pattern.  If the radius of the oil spill increases at a constant rate of 1 m/s, how fast is the area of the spill increasing when the radius is 30 m?

4. Definition of a Definite Integral: If  
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 be the endpoints of these subintervals and we let 
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a. Clearly explain the definition of a definite integral (as stated above).

b. Sketch the graph of 
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 and use it to show the definition of a definite integral (as stated above) graphically.  Hint: you may need more than one sketch.

c. Sketch the graph of 
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i. Riemann sum with left-endpoints

ii. Riemann sum with right-endpoints

iii. Riemann sum with midpoints

Which Riemann sum best approximates 
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5. Interpreting Integrals: A definite integral is a number, while an indefinite integral is a function or a family of functions.
a. Clearly explain the meaning of the symbols “
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” in the expression 
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b. Clearly explain the difference in meaning between a definite integral, an indefinite integral, and an improper integral.  Give an example of each.
c. Explain the difference in meaning between 
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d. Sketch and label the function 
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, as it relates to your sketch.

e. Sketch and label the function 
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.  Evaluate 
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.  Show all work leading to your final answer.

6. More Proofs: 

a. Using a Direct Proof, show that the sum of two rational numbers is a rational number. 
b. Using a Proof by Contradiction, show that if 
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 is a rational number and 
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 is an irrational number, then 
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 is an irrational number.

c. Using a Proof by Contrapositive, show that if 
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 and 
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 are two integers whose product is even, then at least one of the two must be even.

d. Using a Proof by Mathematical Induction, show that for all positive integers 
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